A New Discrete Wavelet Transform

نویسندگان

  • Alexandru Isar
  • Dorina Isar
چکیده

The Discrete Wavelet Transform (DWT) has two parameters: the mother of wavelets and the number of iterations. Selecting different parameters for different DWT of the same signal, different energy concentrations in the wavelet domain are obtained. So, for a particular signal there is a better pair of parameters that realizes the best energy concentration in the wavelet transform domain. In applications is difficult to find this best pair of parameters. This is the reason why the aim of this paper is to introduce a new DWT less sensitive to the parameter selection. This transform is built using a technique very modern in telecommunications, the diversity enhancement. The diversity is enhanced in the wavelet transform domain computing different DWT, of the same signal, with different parameters. So, the input signal, represented by a vector, is transformed into a matrix. Each column of this matrix represents the DWT of the input signal, computed with a different pair of parameters. This matrix represents the result of the new discrete wavelet transform, named the Diversity Enhanced Discrete Wavelet Transform, (DEDWT). The new transform can be used with good results in denoising applications, especially for low SNR signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High impedance fault detection: Discrete wavelet transform and fuzzy function approximation

This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...

متن کامل

Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform

Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...

متن کامل

A New Hybrid Prediction Reduces the Bullwhip Effect of Demand in a Three-level Supply Chain

In this paper, we present a new predictive hybrid model using discrete wavelet transform (DWT), and the artificial neural network (ANN) to reduce the bullwhip effect of demand in supply chain to obtain a real amount of final customer demand. Also, we compare our result with more comprehensive sample of previous research to extend the scope of our study. In this new research our methodology is c...

متن کامل

Subsea Free Span Pipeline Damage Detection Based on Wavelet Transform under Environmental Load

During their service life, marine pipelines continually accumulate damage as a result of the action of various environmental forces. Clearly, the development of robust techniques for early damage detection is very important to avoid the possible occurrence of a disastrous structural failure. Most of vibration-based damage detection methods require the modal properties that are obtained from mea...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003